A Language for Differentiable Functions
نویسندگان
چکیده
We introduce a typed lambda calculus in which real numbers, real functions, and in particular continuously differentiable and more generally Lipschitz functions can be defined. Given an expression representing a real-valued function of a real variable in this calculus, we are able to evaluate the expression on an argument but also evaluate the generalised derivative, i.e., the L-derivative, equivalently the Clarke gradient, of the expression on an argument. The language is an extension of PCF with a real number data-type, similar to Real PCF and RL, but is equipped with primitives for min and weighted average to capture computable continuously differentiable or Lipschitz functions on real numbers. We present an operational semantics and a denotational semantics based on continuous Scott domains and several logical relations on these domains. We then prove an adequacy result for the two semantics. The denotational semantics is closely linked with Automatic Differentiation also called Algorithmic Differentiation, which has been an active area of research in numerical analysis for decades, and our framework can also be considered as providing denotational semantics for Automatic Differentiation. We derive a definability result showing that for any computable Lipschitz function there is a closed term in the language whose evaluation on any real number coincides with the value of the function and whose derivative expression also evaluates on the argument to the value of the generalised derivative of the function.
منابع مشابه
New inequalities for a class of differentiable functions
In this paper, we use the Riemann-Liouville fractionalintegrals to establish some new integral inequalities related toChebyshev's functional in the case of two differentiable functions.
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملSome Perturbed Inequalities of Ostrowski Type for Functions whose n-th Derivatives Are Bounded
We firstly establish an identity for $n$ time differentiable mappings Then, a new inequality for $n$ times differentiable functions is deduced. Finally, some perturbed Ostrowski type inequalities for functions whose $n$th derivatives are of bounded variation are obtained.
متن کاملAN INTRODUCTION TO THE THEORY OF DIFFERENTIABLE STRUCTURES ON INFINITE INTEGRAL DOMAINS
A special class of differentiable functions on an infinite integral domain which is not a field is introduced. Some facts about these functions are established and the special case of z is studied in more detail
متن کاملCertain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces
We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...
متن کامل